The dominant cold-sensitive Out-cold mutants of Drosophila melanogaster have novel missense mutations in the voltage-gated sodium channel gene paralytic.

نویسندگان

  • Helen A Lindsay
  • Richard Baines
  • Richard ffrench-Constant
  • Kathryn Lilley
  • Howard T Jacobs
  • Kevin M C O'Dell
چکیده

Here we report the molecular characterization of Out-cold (Ocd) mutants of Drosophila melanogaster, which produce a dominant, X-linked, cold-sensitive paralytic phenotype. From its initial 1.5-Mb cytological location within 13F1-16A2, P-element and SNP mapping reduced the Ocd critical region to <100 kb and to six candidate genes: hangover, CG9947, CG4420, eIF2a, Rbp2, and paralytic (para). Complementation testing with para null mutations strongly suggests Ocd and para are allelic, as does gene rescue of Ocd semilethality with a wild-type para transgene. Pesticide resistance and electrophysiological phenotypes of Ocd mutants support this conclusion. The para gene encodes a voltage-gated sodium channel. Sequencing the Ocd lines revealed mutations within highly conserved regions of the para coding sequence, in the transmembrane segment S6 of domain III (I1545M and T1551I), and in the linker between domains III and IV (G1571R), the location of the channel inactivation gate. The G1571R mutation is of particular interest as mutations of the orthologous residue (G1306) in the human skeletal muscle sodium channel gene SCN4A are associated with cases of periodic paralysis and myotonia, including the human cold-sensitive disorder paramyotonia congenita. The mechanisms by which sodium channel mutations cause cold sensitivity are not well understood. Therefore, in the absence of suitable vertebrate models, Ocd provides a system in which genetic, molecular, physiological, and behavioral tools can be exploited to determine mechanisms underlying sodium channel periodic paralyses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drosophila as a model for epilepsy: bss is a gain-of-function mutation in the para sodium channel gene that leads to seizures.

We report the identification of bang senseless (bss), a Drosophila melanogaster mutant exhibiting seizure-like behaviors, as an allele of the paralytic (para) voltage-gated Na(+) (Na(V)) channel gene. Mutants are more prone to seizure episodes than normal flies because of a lowered seizure threshold. The bss phenotypes are due to a missense mutation in a segment previously implicated in inactiv...

متن کامل

Probable mechanisms underlying interallelic complementation and temperature-sensitivity of mutations at the shibire locus of Drosophila melanogaster.

The shibire locus of Drosophila melanogaster encodes dynamin, a GTPase required for the fission of endocytic vesicles from plasma membrane. Biochemical studies indicate that mammalian dynamin is part of a complex containing multiple dynamin subunits and other polypeptides. To gain insight into sequences of dynamin critical for its function, we have characterized in detail a collection of condit...

متن کامل

Drosophila sodium channel mutations: Contributions to seizure-susceptibility.

This paper reviews Drosophila voltage-gated Na(+) channel mutations encoded by the para (paralytic) gene and their contributions to seizure disorders in the fly. Numerous mutations cause seizure-sensitivity, for example, para(bss1), with phenotypes that resemble human intractable epilepsy in some aspects. Seizure phenotypes are also seen with human GEFS+ spectrum mutations that have been knocke...

متن کامل

Enhancer of seizure: a new genetic locus in Drosophila melanogaster defined by interactions with temperature-sensitive paralytic mutations.

Mutations in the enhancer of seizure (e(sei] locus have been isolated on the basis of their ability to cause temperature-induced paralysis of alleles at the seizure (sei) locus at temperatures at which these mutations ordinarily do not paralyze. This enhancer is specific to the seizure locus and is without effect on other temperature-sensitive paralytic mutants including para, nap, tip-E and sh...

متن کامل

Phenotypic interaction between temperature-sensitive paralytic mutants comatose and paralytic suggests a role for N-ethylmaleimide-sensitive fusion factor in synaptic vesicle cycling in Drosophila.

The temperature-induced paralysis of comatose (comt) mutants of Drosophila is suggestive of a function for N-ethylmaleimide-sensitive fusion factor (NSF) in the CNS. Mutations in the para gene encoding the subunit of the voltage-gated sodium channel also result in a similar phenotype. We show that paralysis in comt flies is activity-dependent, and in the doubly mutant comt para flies comt-like ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 180 2  شماره 

صفحات  -

تاریخ انتشار 2008